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Is a color superconductor
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1. What is topological superconductor?

2. Is a color superconductor topological?

3. Possible physical implications



What is topological superconductor ?



Rapid progress on discovery of
new topological states of matter

Examples of topological insulators

- quantum Hall effect (2D) foundin 1980
» quantum spin Hall effect (2D) proposed in 2005 / found in 2007
» topological insulators (3D) proposed in 2007 / found in 2008

Examples of topological superconductors

» pPx+ipy superconductor (2D) possibly realized in Sr2Ru0a4

- B phase of 3He (3D) pased on the seminal paper
by N. Read & D. Green in Phys. Rev. B (2000)



Px+1Ppy superconductor in 2D

- order parameter (Y—_p¥p) = (pz +ipy) A

- mean-field Hamiltonian (in momentum space):
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- spectrum is gapped for 1 #0 : B, = |hy| = \/(p— — 1)” + p2A2

>0 “BCS side” =g

Ep A Ep

A Ep




Vortex zero mode

Bogoliubov-de Genne equation
in the presence of a vortex : A(zx) = e |A(r)]
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2% > localized zero energy solution but only for u>0
(When <0, the solution exponentially grows)
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Vortex in px+ipy superconductor for u>0 . o

supports a localized gapless fermion
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Gapless edge state

Bogoliubov-de Genne equation PaLEEry
in the presence of a boundary x<0 x>0
superconductor vacuum
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2 » localized solution only for u>0

(When <0, the solution exponentially grows) £
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with linear dispersion : £ = A p,
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Boundary of px+ipy superconductor for w>0
supports a localized gapless fermion
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Topological charge
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Topological invariant can be defined for
a gapped Hamiltonian in momentum space
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Topological phase transition

. 1 for £>0 @ system is topological ! (N+0)
]o for n<0 . » system is not topological (N=0)

N=0 (u<0) 0 N=1 (u>0)
v > L

T

topological phase transition
(2 phases cannot be distinguished by symmetries)

1. Topological charge “N” can be defined
for a gapped Hamiltonian in momentum space

2. Topological charge is invariant as long as the gap is open

3. The system is topological if N+0O

4. A boundary (vortex) supports a localized gapless fermion
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quantum insulator N£O

spin Hall effect or |
SHe-B |
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1. Topological charge “N” can be defined
for a gapped Hamiltonian in momentum space

e

‘'opological charge is invariant as long as the gap is open
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4. A boundary (vortex) supports a localized gapless fermion

"he system is topological if N+0
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Classification of gapped states by topology

Whether the topological charge (Z or Z2) can be defined
Is determined by the symmetry and spatial dimension

name symmetry dimension
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Classification of gapped states by topology

Whether the topological charge (Z or Z2) can be defined
Is determined by the symmetry and spatial dimension

name symmetry dimension
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These classifications are for noninteracting Hamiltonians
(open problem for interacting Hamiltonians)



Classification of gapped states by topology
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Any (noninteracting) gapped states of matter
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Topological charge in 3D

Topological charge for “class DIII” Hamiltonians in 3D
(o HC =R 7 R il e — 1

Hamiltonian in momentum space E .
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Color superconductor (mean field)

- equal quark masses T
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Topological charge

free-space Hamiltonian with A(z) = Ay : constant
In the chiral limit (m=0) : H=Hr+H;r, = N = Ngr+ Ng

[even parity paring ]
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Fermion spectrum @ vortex

solve BdG equation

rotating in the presence of
CFL guark matter a vortex line :

Az) = " |A(r)]

3> N

vortex line



Fermion spectrum @ vortex

[even parity paring ]

m=0 (Ngr,NrL#0) : 2 localized gapless fermions

- E =wvp, for right-handed
- F = —yp, for left-handed

E E
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nE0 .

m=0 (N=0) : 2 localized fermions become gapped
E = f+vy/m2 + p2
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Fermion spectrum @ vortex

[ odd parity paring j

m=0 (Ngr,NrL#0) : 2 localized gapless fermions

- E =wvp, for right-handed )\
- F = —yp, for left-handed
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2 (N+0) : gaplessness is preserved

> (N=0) : localized fermions disappear



Effective 1D theory @ vortex sieo

Bulk fermions are gapped by A(r — o)
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Low-energy effective theory should involve
(nearly) gapless fermions on a vortex line
.
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Effective 1D theory @ vortex Sefen

Bulk fermions are gapped by A(r — o)
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Low-energy effective theory should involve
(nearly) gapless fermions on a vortex line
.
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Majorana fermions
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mass term for even parity pairing
velocity ve
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gapless fermion @ boundary 7

vacuum
boundary

CFL quark
matter



gapless fermion @ boundary 7

[ odd parity paring ]
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gapless fermion @ boundary 7

[even parity paring ]
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Conclusions



Is a color superconductor topological ?

Yes, in the chiral limit (Nr, NL#0)

B Us(1) vortex in rotating CFL quark matter supports
O sets of gapless right- and left-handed quarks

5 on a non-Abelian vortex [Yasui, Itakura, Nitta (arXiv:1001.3730)]
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== » Microscopic origin of axial current flowing on a vortex

o (vorticity) derived using anomalies

o
20
D. T. Son & A. R. Zhitnisky, Phys. Rev. D (2004)



Is a color superconductor topological ?

E a

NoO, with nonzero quark mass (N=0) \/
" » localized quarks become gapped - > Dz
= Fvy/m?2 + p2 /\

- much lighter than bulk quarks
vm/A ~5x 107% for p~500MeV A~ 50MeV m ~ 10 MeV

- parametrically lighter than pseudo-NG bosons

D. T. Son & M. A. Stephanov

VM — M (A/,LL)2 In (n/A) < mng — m(A/p) Phys. Rev. D (2000)

B could be important low-energy degrees of freedom

- impact on the physics of rotating neutron/quark stars?
(transport property, neutrino emissivity, pulser kick, ...)

- topology of Hamiltonian & existence of gapless fermions
- effect of interaction
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Topological phase transition

- 1 for u>0 mm®» system is topological ! (N+0)
lo for u<0 == » systemis not topological (N=0)

N=0 (u<0) 0 N=1 (u>0)
v > L

T

topological phase transition
(2 phases cannot be distinguished by symmetries)
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- Topological charge is invariant

under the smooth deformation of Hamiltonian

- Topological charge can change

only when the gap in spectrum closes
. W,

# » What are physical consequences of nontrivial topology?



We have learned ... 31/28

1. Topological charge “N” can be defined
for a gapped Hamiltonian in momentum space

2. Topological charge is invariant as long as the gap is open
3. The system is topological if N+0

A 4
4. A vortex / boundary supports a localized gapless fermion
5. px+ipy superconductor in 2D for u>0 is one such example
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vortex boundary
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Classification of gapped states by topology </

Space of gapped Hamiltonians




